1 Abstract

In this paper, we calculate the automorphism of the Taxicab group which is a transformation group preserving the Taxicab metric. In the process, we showed that the automorphism of \mathbb{R} with the standard addition is the set of all linear transformations with respect to \mathbb{R} over \mathbb{Q}. Furthermore, the $\text{Aut}(\mathbb{R})$ is isomorphic to the ring of $\mathbb{R} \times \mathbb{R}$ column-finite matrices with entries in \mathbb{Q} . We go further to characterize the center of $\text{Aut}(\mathbb{R})$ and show $\text{GL}(n, \mathbb{Q})$ is a subgroup of $\text{Aut}(\mathbb{R})$ for all finite n.

2 The Taxicab Group

The Taxicab group consists of the isometries of the plane with respect to the Taxicab metric defined by $d(u, v) = |u_x - v_x| + |u_y - v_y|$ where $u = (u_x, u_y)$, $v = (v_x, v_y)$ are vectors in \mathbb{R}^2 [2].

It has been shown in [2] that the group of isometries of the plane with respect to the taxicab metric is the semi-direct product of the dihedral group D_4 and $T(2)$ where $T(2)$ is the translation group. It has also been shown in [3] that $\text{Aut}(D_4) \cong A_f f (\mathbb{Z}_n) = ax + b$ | $a \in U, b \in \mathbb{Z}_n$

3 Proven Already

The cardinality of \mathcal{H} is the cardinality of any hamel basis is the cardinality of \mathbb{R}

Definition 1. The Cauchy functional equation is a function $f : X \rightarrow Y$ such that $f(x + y) = f(x) + f(y) \forall x, y \in X$

Theorem 1. If an additive function f satisfies the Cauchy functional equation and satisfies one of the following conditions, then there exists a real constant c such that $f(x) = cx$ for all $x \in \mathbb{R}$ [1]:

1. f is continuous at a point;
2. f is monotonic on an interval of positive length;
3. f is bounded from above or below on an interval of positive length;
4. f is integrable;
5. f is Lebesgue measurable;
6. f is a Borel function.
4 What We Think:

\[\text{Aut}(\mathbb{R}, +) \simeq \text{Aut}(\mathcal{H}, +) \] where \(\mathcal{H} \) is the collection of all Hamel bases.

5 Automorphism of \(\mathbb{R} \)

Definition 2. Definition: A set \(S \) finitely spans a vector space \(X \) if \(\forall x \in X \exists N \in \mathbb{N} \) such that

\[x = \sum_{i=1}^{N} \alpha_i s_i \] where \(\alpha_i \) are scalars and \(s_i \in S \) \(\forall i \) (5.1)

Definition 3. A Hamel basis for an infinite vector space \(X \) is a linearly independent set that finitely spans \(X \).

Definition 4. An indexed Hamel basis is a list whose elements come from a Hamel basis such that the union of all elements in the indexed basis is the Hamel basis.

Theorem: Let \(H \) be a Hamel basis. If \(h \in H \), then \(h \in \mathbb{R}/\mathbb{Q} \)

Definition 5. Let \(H \) and \(H' \) be two indexed Hamel bases. Now let \(T_{H'} : \mathbb{R} \to \mathbb{R} \) be given by

\[T_{H'} (x) = \sum_{i=1}^{N_x} \alpha_i T_{H'} (h_i) \] where \(T_{H'} (H) = H' \) (5.2)

We will call \(T \) a Hamel Basis Transformation. We will call \(H \) the Central basis for \(T_{H'} \). Now, denote the set of all Hamel Basis Transformations having a given Central Basis \(H \) by \(T_{H} \).

Lemma 1. If \(T \) is a Hamel Basis Transformation, then \(T \) is a Linear Operator.

Proof: Let \(x, y \in \mathbb{R} \) and \(p_x, p_y \in \mathbb{Q} \)

\[T (p_x x + p_y y) = T \left(\sum_{i=0}^{N_x} q_{x,i} h_i + \sum_{i=0}^{N_y} q_{y,i} h_i \right) \] (5.3)

Without loss of generality, we can assume \(N_x = N_y = N \). If not, for \(M = \min\{N_x, N_y\} \) set \(q_{m,i} = 0 \forall i \in (M, \max\{N_x, N_y\}) \). Now,

\[T (p_x x + p_y y) = \sum_{i=0}^{N} (p_x q_{x,i} + p_y q_{y,i}) T (h_i) \]

\[= p_x T (x) + p_y T (y) \]
This shows that T is a linear operator.

Lemma 2. If T is a Hamel Basis Transformation, then $T \in \text{Aut } (\mathbb{R}, +)$

Proof. Let H be the Central Basis for a Hamel Basis Transformation $T_{H'}$. Take $T_{H'} \in T_{3c}$ and for simplicity call it T.

Assume $r \neq 0$, then $r = \sum_{i=0}^{N_r} q_i h_i$ where $q_i \neq 0 \forall i$.

$$T(r) = \sum_{i=0}^{N_r} q_i T(h_i) = \sum_{i=0}^{N_r} q_i h'_i \text{ where } h'_i \in H'$$

(5.4)

and $q_i h'_i \neq 0$ since $0 \notin H'$. But if $\sum_{i=0}^{N_r} q_i h'_i = 0$, then h'_i is not linearly independent since $q_i \neq 0 \forall i$, therefore $\{h'_i\}_{i=0}^{N_r}$ is not subset of any basis. Hence, H' is not a basis which is a contradiction. Thus, $T(r) \neq 0$. By 2.2-10, [4], and since T is a linear operator, the inverse map exists. Therefore T is bijective.

Lemma 3. Let T_{3c} have H as a Central Basis. Now, if $\phi \in \text{Aut } (\mathbb{R}, +)$, then $\phi \in T_{3c}$

Proof. Now, we show that if $\phi \in \text{Aut } (\mathbb{R}, +)$ then $\phi \in T_{3c}$

By work of Cauchy and others[1], it is well known that for any $q_1 \in \mathbb{Q}$ and any $r_1 \in \mathbb{R}$ we have

$$\phi(qr_1) = q\phi(r_1)$$

(5.5)

furthermore, if r_1 is not a rational multiple of $r_2 \in \mathbb{R}$ then $\forall q_2 \in \mathbb{Q}$

$$\phi(q_1 r_1 + q_2 r_2) = q_1 \phi(r_1) + q_2 \phi(r_2)$$

(5.6)

We must show that $\phi(r_1) \neq q \phi(r_2)$ for some $q \in \mathbb{Q}$. Assume $\phi(r_1) = \phi(qr_2)$, then $\phi(r_1) - \phi(qr_2) = \phi(r_1 - qr_2) = 0$ But since ϕ is an automorphism, then $r_1 - qr_2 = 0$ which implies $r_1 = qr_2$ which is a contradiction to the assumption that r_1 is not a rational multiple of r_2.

By induction, if S is a linearly independent subset of \mathbb{R} and $r_i \in S \forall i$ and $q_i \in \mathbb{Q} \forall i$

$$\phi \left(\sum_{i=1}^{N} q_i r_i \right) = \sum_{i=1}^{N} q_i \phi (r_i)$$

(5.7)

We must show that $\phi(S)$ is a linearly independent set. Assume $\phi(S)$ is not linearly independent, then for some $r \in S$, $\phi(r) = \sum_{i=1}^{M} q_i \phi(r_i)$ where $\forall i q_i \neq 0$ and $r \neq r_i$. Then by above equation, $\phi \left(r - \sum_{i=1}^{M} q_i r_i \right) = 0$. This implies that
\[r = \sum_{i=1}^{M} q_i r_i \] since \(\phi \) is an automorphism. Which is a contradiction to the assumption that \(S \) is a linearly independent subset of \(\mathbb{R} \).

By Zorn’s lemma, there exists a maximal such \(S \) such that \(S \) finitely spans \(\mathbb{R} \). Therefore, \(S \) is a Hamel basis for \(\mathbb{R} \).

By the properties of \(\phi \), it is a linear operator and therefore is uniquely determined by the images of the basis elements. Let \(H \) be a indexed hamel basis. Assume \(H' = \phi(H) \) does not span \(\mathbb{R} \), then \(\exists r' \in \mathbb{R} \) such that \(r' \) is not a linear combination of \(H' \) but \(\phi \) is completely determined by \(\phi(H) \) which implies there is no \(r \) in \(\mathbb{R} \) such that \(r' = \phi(r) \) and therefore \(\phi \) is not onto. This is a contradiction and implies that \(\phi(H) \) spans \(\mathbb{R} \).

Now, since \(\phi(H) \) is linearly independent and spans \(\mathbb{R} \), it forms a hamel basis for \(\mathbb{R} \).

\[\Box \]

Theorem 2. From a indexed hamel basis \(H \) to \(H' \), there exists a unique indexed hamel basis Transformation.

Theorem: The group of all permutations of any indexed Hamel basis is a subgroup of \(\text{Aut}(\mathbb{R},+) \) is isomorphic to \(S(H) \).

6 Matrix Representation

Definition 6. The matrix index set \(I \) for a matrix \(M = [m_{ij}] \) is the set from which \(i \) and \(j \) come.

Definition 7. Let \(G \) be a matrix group and \(S \) be any set subset of the matrix index set for \(G \). Now, the filter of \(G \) over \(S \) is the set.

\[G_S = \{ M = [m_{ij}] \in G \mid m_{ij} = 0 \ \forall \ i \text{ or } j \notin S \text{ except when } i = j \} \quad (6.1) \]

Theorem 3. The filter \(H \) of a matrix group \(G \) over \(S \) is a subgroup of \(G \).

Proof. Let \(A = [a_{ij}], B = [b_{ij}], \) and \(C = [c_{ij}] = AB \). Let \(I \) be the index set for \(G \). Now, the identity is in \(H \) and \(H \) is associative. The proof is left to the reader. We must now show that \(H \) is closed. If \(i = j \) or \(i, j \in S \), then \(c_{ij} \) can be anything. Assume \(i \neq j \) and \(i \notin S \), then \(c_{ij} = \sum_{k \in I} a_{ik}b_{kj} = a_{ii}b_{ij} \) since \(a_{ik} = 0 \ \forall \ k \neq i \). Since \(i \neq j \), then \(c_{ij} = 0 \). Similarly, if \(i \neq j \) and \(j \notin S \), then \(c_{ij} = 0 \).

Now we show \(A^{-1} = [\alpha_{ij}] \) inverse of \(A \in H \). It is known that for any matrix \(M \), \(M^{-1} = \frac{1}{\det(M)} F^T \) where \(F_{ij} = [f_{ij}] \) is the \((i, j)\)th minor of \(A \). Now, as before if \(i = j \) or \(i, j \in S \), then \(\alpha_{ij} \) can be anything. Now, assume \(i \neq j \) and \(i \notin S \), then \(\alpha_{ij} = 0 \). \(\Box \)
Theorem 4. If there exists a maximal H subgroup of $\text{Aut}(\mathbb{R})$, then H is uncountable.

Theorem: The $\text{Inn}(\mathbb{R})$ is the identity map.

Theorem: The $\text{Out}(\mathbb{R}) = \text{Aut}(\mathbb{R})$

Theorem: The center of \mathbb{R} is the set of all linear maps.

TO DO: 1.) identify subgroups of $\text{Aut}(\mathbb{R})$ - are they maximal? - are they normal? if so $\text{Aut}(\mathbb{R})/N$ is a group 2.) identify elements of order 2 in $\text{Aut}(\mathbb{R})$ - centralizer of these elements: $C_a(G) = \{g \in G | ga = ag\}$ which is the Fixed group of a in G.

5
References

 Published in USA by publication service.

