k-involutions of algebraic groups of type G_2

John Hutchens

Southern Arkansas University

AMS Spring Sectional Meeting, Central

October 1, 2014
A k-involution, $\theta : G \to G$, is an automorphism of order 2 that is defined over k.

Let G be a reductive connected algebraic group defined over k and let $\theta \in \text{Aut}(G)$ be a k-involution. Then a symmetric k-variety will be the quotient

$$G_k/H_k \cong Q_k = \{x\theta(x)^{-1} \mid x \in G_k\}.$$
symmetric k-varieties

A torus S is θ-split if $\theta(s) = s^{-1}$ for all $s \in S$.

A torus is (θ, k)-split if it is both θ-split and k-split.

$I_s(x) = sx{s^{-1}}$

$X^*(T)$ is the group of characters associated to a torus T

$\Phi(T)$ is the root space associated to a torus T
A.G. Helminck simplifies the classification of k-involutions of k-split algebraic groups into the classification of the following invariants,

(1) classification of admissible k-involutions of

$$(X^*(T), X^*(S), \Phi(T), \Phi(S)),$$

letting T be a maximal torus, $T \supset S$ is a maximal k-split torus, Φ denotes the roots associated with a torus,

(2) classification of the G_k-isomorphy classes of k-inner elements

$s \in I_k(S_{\theta}^-)$, where the set $S_{\theta}^- = \{ s \in S \mid \theta(s) = s^{-1} \}$.

All k-involutions are of the form $\theta \circ I_s$ where θ is an invariant of type (1) and s is of type (2).
Theorem

The automorphism group $\text{Aut}(C_K)$ of the octonion algebra C_K is a connected, simple algebraic group of type G_2.

Proposition

Let C be an octonion algebra over k. Then the automorphism group $\text{Aut}(C)$ is defined over k.

from now on we think of our algebraic groups of type G_2 as automorphism groups of octonion algebras
composition algebras

A composition algebra, C, over a field, k, is a potentially nonassociative algebra with identity element, e, such that there exists a nondegenerate quadratic form N on C where

$$N(xy) = N(x)N(y), \quad x, y \in C$$

$$\langle x, y \rangle = N(x + y) - N(x) - N(y),$$

with algebra involution

$$\overline{x} = \langle x, e \rangle e - x.$$
If D is a split quaternion algebra, $D \cong M_2(k)$, the 2×2 matrices over k with typical matrix multiplication, and determinant as its quadratic form.

$$
\begin{bmatrix}
\alpha_{11} & \alpha_{12} \\
\alpha_{21} & \alpha_{22}
\end{bmatrix}
=
\begin{bmatrix}
\alpha_{22} & -\alpha_{12} \\
-\alpha_{21} & \alpha_{11}
\end{bmatrix}
$$
An element of our split octonion algebra will be an ordered pair of elements from a quaternion algebra, \((x, y)\) where \(x, y \in D\).

\[
N((x, y)) = \det(x) - \det(y)
\]

\[
(x, y)(u, v) = (xu + \overline{vy}, vx + y\overline{u})
\]
When $\text{Aut}(C)$ is split there is a k-split maximal torus $T \subset \text{Aut}(C)$ of the form

$$T = \{ t_{(\gamma,\delta)} \equiv \text{diag}(1, \gamma \delta, (\gamma \delta)^{-1}, 1, \delta^{-1}, \gamma, \gamma^{-1}, \delta) \mid \gamma, \delta \in k^* \}.$$

Proposition

The map \mathcal{I}_{g^*} is an automorphism of order 2 of $\text{Aut}(C)$ where $g^* = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 \end{pmatrix} \oplus \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \in \text{Aut}(C)$, and $\mathcal{I}_{g^*}(t) = t^{-1}$ for all $t \in T$.
Proposition [Jacobson, 58]

For $s, t \in \text{Aut}(C)$ such that $s^2 = t^2 = \text{id}$, $t \cong s$ if and only if s and t fix elementwise isomorphic quaternion subalgebras.

The algebraic groups we are considering have trivial centers, and no non-trivial outer automorphisms.

Corollary

For $s, t \in \text{Aut}(C)$ $I_s^2 = I_t^2 = \text{id}$ then $I_t \cong I_s$ if and only if s and t leave isomorphic quaternion subalgebras invariant.
Pfister forms

Proposition

The structure of a composition algebra is determined by its norm.

Its norm is determined by its Pfister form.

Example:

\[
\left(\frac{\lambda_1, \lambda_2}{k} \right) \sim N_D
\]

where \(e, a, b, ab\) are a basis for \(D\) a quaternion algebra and \(a^2 = \lambda_1\) and \(b^2 = \lambda_2\).
Example: Let $g_* \in \text{Aut}(C)$ fixes elementwise the following quaternion algebra

$$k \left[\begin{array}{c} 1 \\ 1 \\ e \end{array} , 0 \right] \bigoplus k \left[\begin{array}{c} 1 \\ 1 \\ a \end{array} , 0 \right] \bigoplus k \left(0, \begin{array}{c} 1 \\ 1 \\ b \end{array} \right) \bigoplus k \left(0, \begin{array}{c} 1 \\ 1 \\ ab \end{array} \right),$$

and $(b + ab)(e + a + b + ab) = 0$, which tells us the quaternion subalgebra is split.

So \mathcal{I}_{g_*} is a representative of the conjugacy class in $\text{Aut}(C)$ that fixes a split quaternion subalgebra.

Over any field k there is only one such conjugacy class of quaternion algebras, and so only one class of k-involutions.
Theorem

- When \(k = K \) and \(\mathbb{F}_p \) with \(p > 2 \), there is only one isomorphism class of \(k \)-involutions of \(\text{Aut}(C) \).
- When \(k = \mathbb{R} \) and \(\mathbb{Q}_2 \), \(\theta \) and \(\theta \circ \mathcal{I}_{t(1,-1)} \) are representatives of the two isomorphism classes of \(k \)-involutions of \(G = \text{Aut}(C) \).
- When \(k = \mathbb{Q}_p \) with \(p \neq 2 \), \(\theta \) and \(\theta \circ \mathcal{I}_{t(-N_p,-pN_p^{-1})} \) give us the two isomorphism classes.
- When \(k = \mathbb{Q} \) we have an infinite number of non-isomorphic quaternion division subalgebras, and so an infinite number of classes of \(k \)-involutions.
fixed point groups

Proposition

Let $t \in \text{Aut}(C) = G$ such that $t^2 = \text{id}$ and $D \subset C$ the quaternion algebra elementwise fixed by t then $f \in G^I_t = \{ g \in G \mid I_t(g) = g \}$ if and only if f leaves D invariant.

In our case this always is the subgroup containing elements of the form

$$t((x, y)) = (cx^c, pcy^c),$$

where $c, x, y, p \in D$ and $N_D(p) = 1$.
fixed point groups

Example: for $k = \mathbb{R}$ or \mathbb{Q}_2 we have two isomorphism classes

$g* \in \operatorname{Aut}(C)$ fixes elementwise a split quaternion subalgebra, so the class $[I_{g*}]$ has the fixed point group $\operatorname{PGL}_2(k) \times \operatorname{SL}_2(k)$.

$g*t_{(1,-1)} \in \operatorname{Aut}(C)$ leaves a quaternion division algebra fixed elementwise, so the class $[I_{g*t_{(1,-1)}}] = [I_{g*} \circ I_{t_{(1,-1)}}]$ has the fixed point group $\operatorname{SO}(D_0, N_D) \times \operatorname{Sp}(1)$.
Galois cohomology

According to Serre...

\[H^0(\text{Gal}_k, \text{Aut}(X, K)) = \text{Aut}(X, k) \]

If we consider \(H^1(\text{Gal}_k, \text{Aut}(X, K)) \) we are considering the \(K/k \)-forms of \(X \), where a \(K/k \)-form of \(X \) will be any object \(Y \) defined over \(k \) that becomes isomorphic to \(X \) when the ground field of \(X \) and \(Y \) are extended to \(K \).
Galois cohomology

The elements of $H^1(Gal_k, \text{Aut}(C, D, K))$ correspond to the isomorphism classes of k-involutions.

Let $G = \text{Aut}(C)$, C_k be the the isomorphism classes of k-involutions and $Z_G(C_k)$ be the set of isomorphism classes of centralizers of elements of order 2 in Aut(G).

There is a bijection between $H^1(Gal_k, \text{Aut}(C, D, K))$ and $H^1(Gal_k, Z_G(C_K))$.

Proposition

The following map is bijective

$$Z_G : C_k \rightarrow H^1(Gal_k, Z_G(C_K)),$$

where $[\theta] \mapsto [Z_G(\theta)]$.